wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 7log(1615)+5log(2524)+3log(8180)=log2


Open in App
Solution

Determine the proving of the given expression 7log(1615)+5log(2524)+3log(8180)=log2

Solve the L.H.S part:

7log(1615)+5log(2524)+3log(8180)=7log(243×5)+5log(5223×3)+3log(3424×5)=log(22837×57)+log(510215×35)+log(312212×53)(Sincenlogm=logmn)=log(228×510×31237×57×215×35×212×53)(Usingloga+logb+logc=logabc)=log(228×510×312510×227×312)(Sinceam×an=am+n)=log(22827)(Sinceaman=amn)=log2

Hence, the L.H.S=R.H.S.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Inequalities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon