Prove that 7log(1615)+5log(2524)+3log(8180)=log2
Determine the proving of the given expression 7log(1615)+5log(2524)+3log(8180)=log2
Solve the L.H.S part:
7log(1615)+5log(2524)+3log(8180)=7log(243×5)+5log(5223×3)+3log(3424×5)⇒=log(22837×57)+log(510215×35)+log(312212×53)(Sincenlogm=logmn)⇒=log(228×510×31237×57×215×35×212×53)(Usingloga+logb+logc=logabc)⇒=log(228×510×312510×227×312)(Sinceam×an=am+n)⇒=log(228−27)(Sinceaman=am−n)⇒=log2
Hence, the L.H.S=R.H.S.
Prove that n77+n55+n33+n22−37210 n is a positive integer for all nϵN.