wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: a3cosBcosC+b3cosCcosA+c3cosAcosB=abc(12cosAcosBcosC).

Open in App
Solution

L.H.S.=k3[sin3AcosBcosC+sin3BcosCcosA+sin3CcosAcosB]
=k3[sin3AcosBcosC+sinB(1cos2B)cosCcosA+sinC(1cos2C)cosAcosB]
k3[sin3AcosBcosC+cosA(sinBcosC+sinCcosB)12cosAcosBcosC(sin2B+sin2C)]
=k3[sin3AcosBcosC+cosAsin(B+C)cosAcosBcosCsin(B+C)cos(BC)]
=k3[sinA(1cos2A)cosBcosC+cosAsinAcosAcosBcosCsinAcos(BC)]
=k3sinA[cosBcosC(1cos2A)+cosAcosAcosBcosCcos(BC)]
=k3sinA[cosA+cosBcosCcosAcosBcosCcosA+cos(BC)]
=k3sinA[cos(B+C)+cosBcosCcosAcosBcosCcos(B+C)+cos(BC)]
=k3sinA[sinAsinCcosAcosBcosC.2sinBsinC]
=k3sinAsinBsinC(12cosAcosBcosC)
= abc(12cosAcosBcosC). = R.H.S


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon