We have,
a(b−c)3+b(c−a)3+c(a−b)3
⇒a(b3−c3−3bc(b−c))+b(c3−a3−3ac(c−a))+c(a3−b3−3ab(a−b))
⇒a(b3−c3−3b2c+3bc2)+b(c3−a3−3ac2+3a2c)+c(a3−b3−3a2b+3ab2)
⇒ab3−ac3−3ab2c+3abc2+bc3−ba3−3abc2+3a2bc+ca3−cb3−3a2bc+3ab2c
⇒ab3−ac3+bc3−ba3+ca3−cb3
⇒a3(c−b)+b3(a−c)+c3(b−a)
Hence proved.