wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: A cosA+b cos B+c cos C=2 a sin B sinC

Open in App
Solution

= a cos A + b cos B + c cos C
Let, k=asinA
So, the LHS reduces to-
=(k2) [ 2 sin A cos A + 2 sin B cos B + 2 sin C cos C ]
=(k2) [ ( sin 2A + sin 2B ) + sin 2C ]
=(k2) [ 2 sin (A+B)· cos(A-B) + sin 2C ]
Using the identity:

sinA±sinB=2sin(A±B2)cos(AB2)
=(k2) [ 2 sin C. cos(A-B) + 2 sin C cos C ]
= k sin C [ cos(A-B) + cos C ] Substituting, cos \(C =cos [\pi-(A+B)]=-cos(A+B)\)
= k sin C [ cos(A-B) - cos(A+B) ]
= k sin C [ 2 sin A sin B ]
= 2 ( k sin A ) sin B sin C
= 2 a sin B sin C = RHS

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon