= a cos A + b cos B + c cos C
Let, k=asinA
So, the LHS reduces to-
=(k2) [ 2 sin A cos A + 2 sin B cos B + 2 sin C cos C ]
=(k2) [ ( sin 2A + sin 2B ) + sin 2C ]
=(k2) [ 2 sin (A+B)· cos(A-B) + sin 2C ]
Using the identity:
sinA±sinB=2sin(A±B2)cos(A∓B2)
=(k2) [ 2 sin C. cos(A-B) + 2 sin C cos C ]
= k sin C [ cos(A-B) + cos C ] Substituting, cos \(C =cos [\pi-(A+B)]=-cos(A+B)\)
= k sin C [ cos(A-B) - cos(A+B) ]
= k sin C [ 2 sin A sin B ]
= 2 ( k sin A ) sin B sin C
= 2 a sin B sin C = RHS