wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that

(a2​​​​​​-b2)3 +(b2​​​​​​-c2)3 +(c2​​​​​​-a2)3 divided by

(a-b)3 +(b-c)3+(c-a)3. equals to. (a+b)(b+c)(c+a)

Open in App
Solution

---> if A+ B+ C = 0 ; A³ + B³ + C³ = 3ABC
Using above formula
( a² - b² ) + ( b² - c² ) + ( c² - a² ) = 0
therefore
( a² - b² )³ + ( b² - c² )³ + ( c² - a² )³ = 3( a² - b² )( b² - c² )( c² - a² )
( a - b ) + ( b - c ) + ( c - a ) = 0
( a - b )³ + ( b - c )³ + ( c - a )³ = 3( a - b )( b - c )( c - a )
[ ( a² - b² )³ + ( b² - c² )³ + ( c² - a² )³ divided by ( a - b )³ + ( b - c )³ + ( c - a )³
=3( a² - b² )( b² - c² )( c² - a² ) divided by 3( a - b )( b - c )( c - a )
= 3(a-b)(a+b)(b-c)(b+c) (c-a)(c+a) divided by 2(a-b)(b-c)(c-a)
= (a+b)(b+c)(c+a)

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon