wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (aI+bA)n=anI+nan1bA is true for all the value nϵN.

Open in App
Solution

Let P (n) be tha statement.
P(n):(aI+bA)n=anI+nan1bAP(1):al+bA=ai+bAHence P(1)istrue.P(k):(aI+bA)k=akI+nak1bA.....(1)Nowwehavetoprovethatp(k+1)istrueP(k+1):(aI+bA)k+1=ak+1I+(k+1)akbAL.H.SofP(k+1)(aI+bA)k+1=(aI+bA)k(aI+bA)=(akI+kak1)(using(1))=(ak+1)I2+kakbAl+kak1b2A2=(ak+1)+(k+1)akbAl+O[A2=A.A=[0000]]=dk+1I+(k+1)dkbA[AI=A]=R.H.SP(k+1)istrue.
Hence P(n) is true for all the value nϵN.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Combinations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon