Let P (n) be tha statement.
P(n):(aI+bA)n=anI+nan−1bAP(1):al+bA=ai+bAHence P(1)istrue.P(k):(aI+bA)k=akI+nak−1bA.....(1)Nowwehavetoprovethatp(k+1)istrueP(k+1):(aI+bA)k+1=ak+1I+(k+1)akbAL.H.SofP(k+1)(aI+bA)k+1=(aI+bA)k(aI+bA)=(akI+kak−1)(using(1))=(ak+1)I2+kakbAl+kak−1b2A2=(ak+1)+(k+1)akbAl+O[∵A2=A.A=[0000]]=dk+1I+(k+1)dkbA[∵AI=A]=R.H.S∴P(k+1)istrue.
Hence P(n) is true for all the value nϵN.