Let Z=1+zz=1+1z≠1
∴Zn=(1+z)2zn=1(given)orZ=(1)1/n
cos2rπn+isin2rπn
where r = 0, 1, 2, 3, .....(n - 1)
Now for r = 0, Z = 1 but since Z ≠ 1, hence we have
∴Z=(cos2rπn+isin2rπn)
See Q.5 (d) and Q.6 P. 61-64.
or 1+1z=cos2rπn+isin2rπn
∴1z=−1+cos2rπnisin2rπn
=−2sin2rπni2sinrπncosrπn
=2isinrπn(cosrπn+isinrπn)
as -1 = i2
Taking reciprocal, we get
∴z=12isinrπn(cosrπn−isinrπn)
De-moivre's theorem
or x+iy=−12−i2cotrπn∵1i=−i
∴x=−12.
This represents a line parallel to y-axis.