wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that b2sin2C+c2sin2B=2bcsinA.

Open in App
Solution

b2sin2C+c2sin2B
=b2(2sinCcosC)+c2(2sinBcosB)
=(2bcosC)bsinC+(2ccosB)csinB
bsinB=csinCbsinC=csinB
=2csinB(bcosC+ccosB)
=2csinB×a where bcosC+ccosB=a
=2ac.bsinAa
asinA=bsinBasinB=bsinA
=2ac×bsinAa
=2bcsinA

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon