1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
Prove that ...
Question
Prove that
b
2
x
2
−
a
2
y
2
=
a
2
b
2
,
if:
i)
x
=
a
sec
θ
,
y
=
b
t
a
n
θ
ii)
x
=
a
cos
e
c
θ
,
y
=
b
cot
θ
Open in App
Solution
b
2
x
2
−
a
2
y
2
=
a
2
b
2
i)
x
=
a
sec
θ
,
y
=
b
tan
θ
L
H
S
=
b
2
x
2
−
a
2
y
2
=
b
2
a
2
sec
2
θ
−
a
2
b
2
tan
2
θ
=
a
2
b
2
(
sec
2
θ
−
tan
2
θ
)
=
a
2
b
2
=
R
H
S
∵
sin
2
+
cos
2
θ
=
1
⇒
1
−
sin
2
θ
=
cos
2
θ
Dividing both sides by
cos
2
θ
⇒
sec
2
θ
−
tan
2
θ
=
1
(
sin
θ
cos
θ
=
tan
θ
)
ii)
a
csc
θ
=
x
b
cot
θ
=
y
L
H
S
=
b
2
x
2
−
a
2
y
2
=
b
2
a
2
csc
2
θ
−
a
2
b
2
cot
2
θ
=
a
2
b
2
(
csc
2
θ
−
cot
2
θ
)
=
a
2
b
2
=
R
H
S
∵
csc
2
θ
−
cot
2
θ
=
1
Suggest Corrections
0
Similar questions
Q.
If
x
=
a
sec
θ
+
b
tan
θ
and
y
=
a
tan
θ
+
b
sec
θ
, prove that
x
2
−
y
2
=
a
2
−
b
2
Q.
Prove that
x
2
−
y
2
=
a
2
−
b
2
, if
x
=
a
sec
θ
+
b
tan
θ
and
y
=
a
tan
θ
+
b
sec
θ
.
Q.
Prove the following trigonometric identities.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x
2
− y
2
= a
2
− b
2