L.H.S
(b−c)cotA2+(c−a)cotB2+(a−b)cotC2 ......... (1)
We know that sine rule,
asinA=bsinB=csinC
Now, 1st Part
(b−c)cotA2
=(4R2sin2B−4R2sin2C)cotA2
=4R2(1−cos2B2−1−cos2C2)cotA2
=4R2×12(cos2C−cos2B)cotA2
=2R2×(cos2C−cos2B)cotA2
=2R2×(2sin(B+C)sin(B−C))cosA2sinA2
=4R2×(sin(π−A)sin(B−C))cosA2sinA2
=4R2×(sinAsin(B−C))cosA2sinA2
=4R2sin(B−C)cosA2
(b−c)cotA2=4R2[sinBcosC−cosBsinC]cosA2 ......... (2)
Similarly, 2nd Part
(c−a)cotB2=4R2[sinCcosA−cosCsinA]cosB2 ......... (3)
Similarly, 3rd Part
(a−b)cotC2=4R2[sinAcosB−cosAsinB]cosC2 ......... (4)
On adding equation (2), (3) and (4), we get
(b−c)cotA2+(c−a)cotB2+(a−b)cotC2=0
Hence, proved.