1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differentiation to Solve Modified Sum of Binomial Coefficients
Prove that:b+...
Question
Prove that :
b
+
c
2
a
2
b
c
c
+
a
2
b
2
c
a
a
+
b
2
c
2
a
b
=
a
-
b
b
-
c
c
-
a
a
+
b
+
c
a
2
+
b
2
+
c
2
Open in App
Solution
Let
LHS
=
Δ
=
b
+
c
2
a
2
b
c
c
+
a
2
b
2
c
a
a
+
b
2
c
2
a
b
=
b
+
c
2
-
c
+
a
2
a
2
-
b
2
bc
-
ca
c
+
a
2
-
a
+
b
2
b
2
-
c
2
c
a
-
a
b
a
+
b
2
c
2
a
b
Applying
R
1
→
R
1
-
R
2
and
R
2
→
R
2
-
R
3
=
b
-
a
b
+
2
c
+
a
a
+
b
a
-
b
c
b
-
a
c
-
b
b
+
2
a
+
c
b
-
c
b
+
c
a
c
-
b
a
+
b
2
c
2
a
b
=
a
-
b
b
-
c
-
b
+
2
c
+
a
a
+
b
-
c
-
b
+
2
a
+
c
b
+
c
-
a
a
+
b
2
c
2
a
b
A
pplying
x
2
-
y
2
=
x
+
y
x
-
y
and
taking
out
a
-
b
co
m
m
o
n
from
R
1
and
b
-
c
from
R
2
=
a
-
b
b
-
c
-
2
b
+
c
+
a
a
+
b
-
c
-
2
b
+
a
+
c
b
+
c
-
a
a
+
b
2
-
c
2
c
2
a
b
Applying
C
1
→
C
1
-
C
2
=
a
-
b
b
-
c
-
2
b
+
c
+
a
a
+
b
-
c
-
2
b
+
a
+
c
b
+
c
-
a
a
+
b
+
c
a
+
b
-
c
c
2
a
b
Applying
x
2
-
y
2
=
x
+
y
x
-
y
in
C
1
=
a
-
b
b
-
c
a
+
b
+
c
-
2
a
+
b
-
c
-
2
b
+
c
-
a
a
+
b
-
c
c
2
a
b
Taking
out
a
+
b
+
c
common
from
C
1
=
a
-
b
b
-
c
a
+
b
+
c
-
2
a
+
b
-
c
0
c
-
a
c
-
a
a
+
b
-
c
c
2
a
b
Applying
R
2
→
R
2
-
R
1
=
a
-
b
b
-
c
a
+
b
+
c
c
-
a
-
2
a
+
b
-
c
0
1
1
a
+
b
-
c
c
2
a
b
Taking
out
c
-
a
common
from
R
2
=
a
-
b
b
-
c
a
+
b
+
c
c
-
a
-
2
a
+
b
+
c
-
c
0
0
1
a
+
b
-
c
c
2
-
ab
a
b
Applying
C
2
→
C
2
-
C
3
=
a
-
b
b
-
c
a
+
b
+
c
c
-
a
-
1
-
2
a
+
b
+
c
a
+
b
-
c
c
2
-
ab
Expanding
along
R
2
=
-
a
-
b
b
-
c
a
+
b
+
c
c
-
a
-
2
c
2
+
2
ab
-
a
2
-
b
2
-
2
ab
+
c
2
=
-
a
-
b
b
-
c
a
+
b
+
c
c
-
a
-
a
2
-
b
2
-
c
2
=
a
-
b
b
-
c
a
+
b
+
c
c
-
a
a
2
+
b
2
+
c
2
=
RHS
Suggest Corrections
0
Similar questions
Q.
Prove the following :
∣
∣ ∣
∣
a
b
−
c
c
+
b
a
+
c
b
c
−
a
a
−
b
b
+
a
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
)
.
Q.
Using properties of determinants, prove that :
∣
∣ ∣
∣
a
b
−
c
c
+
b
a
+
c
b
c
−
a
a
−
b
b
+
a
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
)
Q.
Show that
∣
∣ ∣
∣
a
b
−
c
c
+
b
a
+
c
b
c
−
a
a
−
b
b
+
a
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
)
Q.
Prove that :
a
2
a
2
-
b
-
c
2
b
c
b
2
b
2
-
c
-
a
2
c
a
c
2
c
2
-
a
-
b
2
a
b
=
a
-
b
b
-
c
c
-
a
a
+
b
+
c
a
2
+
b
2
+
c
2
Q.
(a − b)
3
+ (b − c)
3
+ (c − a)
3
=
(a) (a + b + c) (a
2
+ b
2
+ c
2
− ab − bc − ca)
(b) (a − b) (b − c) (c − a)
(c) 3(a − b) ( b− c) (c − a)
(d) none of these