wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that -bcb2+bcc2+bca2+ac-acc2+aca2+abb2+ab-ab=ab+bc+ca3

Open in App
Solution

=-bcb2+bcc2+bca2+ac-acc2+aca2+abb2+ab-ab=1abc-abcab2+abcac2+abca2b+abc-abcc2b+abca2c+abcb2c+abc-abc Applying R1aR1, R2bR2 and R3cR3 and then dividing by abc=abcabc-bcab+acac+abab+bc-accb+abac+bcbc+ac-ab Taking out a, b and c common from the three columnsab+bc+caab+bc+caab+bc+caab+bc-accb+abac+bcbc+ac-ab Applying R1R1+R2+R3=(ab+bc+ca)111ab+bc-accb+abac+bcbc+ac-ab=(ab+bc+ca)0010-(ab+bc+ac)cb+abac+bc+abbc+ac+ab-ab Applying C1C1-C3 and C2C2-C3=(ab+bc+ca)0-(ab+bc+ac)ac+bc+abbc+ac+ab=(ab+bc+ca)(ab+bc+ac)2=(ab+bc+ca)3

Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon