wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: 2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1=0

Open in App
Solution

Using identities
a3+b3=(a+b)(a2+b2ab)
a2+b2=(a+b)22ab
2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1
2(sin2θ+cos2θ)(sin4θ+cos4θsin2θcos2θ)3(sin4θ+cos4θ)+1
2(sin4θ+cos4θsin2θcos2θ)3(sin4θ+cos4θ)+1
2((sin2θ+cos2θ)22sin2θcos2θsin2θcos2θ)3((sin2θ+cos2θ)22sin2θcos2θ)+1
2(13sin2θcos2θ)3(12sin2θcos2θ)+1
26sin2θcos2θ3+6sin2θcos2θ+1
23+1
0=LHS=RHS
Hence proved.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon