∣∣
∣
∣∣(x+y)2zxzyzx(z+y)2xyzyxy(z+x)2∣∣
∣
∣∣
=1xyz∣∣
∣
∣∣z(x+y)2z2xz2yzx2x(z+y)2x2yzy2xy2y(z+x)2∣∣
∣
∣∣ [Multiplying first, second and third row by z,x,y respectively]
=∣∣
∣
∣∣(x+y)2z2z2x2(z+y)2x2y2y2(z+x)2∣∣
∣
∣∣ [Taking common z,x,yrespectively from first, second and third row .]
[C′2=C2−C1 and C′3=C3−C2 gives the following]
=∣∣
∣
∣∣(x+y)2z2−(x+y)20x2(z+y)2−x2x2−(z+y)2y20(z+x)2−y2∣∣
∣
∣∣
=(x+y+z)2∣∣
∣
∣∣(x+y)2z−(x+y)0x2(z+y)−xx−(z+y)y20(z+x)−y∣∣
∣
∣∣
[R′1=R1−(R2+R3) gives the following]
=(x+y+z)2∣∣
∣
∣∣2(xy)−2y2y−2xx2(z+y)−xx−(z+y)y20(z+x)−y∣∣
∣
∣∣
[C′3=C3+C2 gives]
=(x+y+z)2∣∣
∣
∣∣2(xy)−2y−2xx2(z+y)−x0y20(z+x)−y∣∣
∣
∣∣
Now expanding with respect to the first row we get,
=2(x+y+z)2[xy(z+y−x)(z+x−y)+yx2(z+x−y)+xy2(z+y−x)]
=2xy(x+y+z)2[(z+y−x)(z+x−y)+x(z+x−y)+y(z+y−x)]
=2xy(x+y+z)2[(z+x−y)(z+y)+y(z+y−x)]
=2xy(x+y+z)2[z(z+y+x)]
=2xyz(x+y+z)3