2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Summation by Sigma Method
Prove that| ...
Question
Prove that
|
⎡
⎢
⎣
1
1
1
a
b
c
a
3
b
3
c
3
⎤
⎥
⎦
| =
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Open in App
Solution
LHS:
⎡
⎢
⎣
1
1
1
a
b
c
a
3
b
3
c
3
⎤
⎥
⎦
=
1
⋅
det
(
b
c
b
3
c
3
)
−
1
⋅
det
(
a
c
a
3
c
3
)
+
1
⋅
det
(
a
b
a
3
b
3
)
=
1
⋅
(
b
c
3
−
c
b
3
)
−
1
⋅
(
a
c
3
−
c
a
3
)
+
1
⋅
(
a
b
3
−
b
a
3
)
=
b
c
3
−
b
3
c
−
a
c
3
+
a
3
c
+
a
b
3
−
a
3
b
RHS:
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
=
(
a
b
−
a
c
−
b
2
+
b
c
)
(
c
−
a
)
(
a
+
b
+
c
)
=
(
a
b
c
−
a
b
−
a
c
2
+
a
2
c
−
b
2
c
+
a
b
2
+
b
c
2
−
a
b
c
)
(
a
+
b
+
c
)
=
a
2
b
2
+
a
b
3
+
a
b
2
c
−
a
3
b
−
a
2
b
2
−
a
2
b
c
+
a
3
c
+
a
2
b
c
+
a
2
c
2
−
a
2
c
2
−
a
b
c
2
−
a
c
3
+
a
b
c
2
+
b
2
c
2
+
b
c
3
−
a
b
2
c
−
b
3
c
−
b
2
c
2
=
b
c
3
−
b
3
c
−
a
c
3
+
a
3
c
+
a
b
3
−
a
3
b
LHS=RHS
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Solve
∣
∣ ∣
∣
1
1
1
a
b
c
a
3
b
3
c
3
∣
∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Q.
By using properties of determinants, show that:
(i)
(ii)