Prove that
∣∣
∣∣111abca3b3c3∣∣
∣∣=(a−b)(b−c)(c−a)(a+b+c)
Let Δ=∣∣
∣∣111abca3b3c3∣∣
∣∣
Operating C1→C1−C2 and C2→C2−C3, we get
=∣∣ ∣∣001a−bb−cca3−b3b3−c3c3∣∣ ∣∣=∣∣ ∣ ∣∣001(a−b)(b−c)c(a−b)(a2+ab+b2)(b−c)(b2+bc+c2)c3∣∣ ∣ ∣∣ [∵x3−y3=(x−y)(x2+xy+y2)]
Taking common (a-b) from C1 and (b−c) from C2. We get
=(a−b)(b−c)∣∣
∣∣00111ca2+ab+b2b2+bc+c2c3∣∣
∣∣
Now expanding along R1. We get
=(a−b)(b−c)[1×(b2+bc+c2)−1×(a2+ab+b2)]=(a−b)(b−c)[b2+bc+c2−a2−ab−b2]=(a−b)(b−c)[bc−ab+c2−a2]=(a−b)(b−c)[b(c−a)(c−a)(c+a)]=(a−b)(b−c)(c−a)(a+b+c)=RHS.
Hence proved.
In this type of questions we only use either row operations or column operations not both at one time.