wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: ∣ ∣111abca3b3c3∣ ∣=(bc)(ca)(ab)(a+b+c).

Open in App
Solution

Δ=∣ ∣ ∣111abca3b3c3∣ ∣ ∣C2=C2C1Δ=∣ ∣ ∣101abaca3b3a3c3∣ ∣ ∣C3=C3C1Δ=∣ ∣ ∣100abacaa3b3a3c3a3∣ ∣ ∣
Expanding along R1
Δ=1{(ba)(c3a3)(ca)(b3a3)0+0Δ=(ba)(ca)(c2+a2ac)(ca)(ba)(b2+a2ab)Δ=(ba)(ca){c2+a2acb2a2+ab}Δ=(ba)(ca){c2b2+a(bc)}Δ=(ba)(ca){(cb)(c+b)+a(cb)}Δ=(ba)(ca)(cb)(a+b+c)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon