wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that ∣ ∣ ∣ ∣1+a11111+b11111+c11111+d∣ ∣ ∣ ∣=abcd(1+1a+1b+1c+1d). Hence, find the value of the determinant if a,b,c,d are the roots of the equation px4+qx3+rx2+sx+t=0.

Open in App
Solution

∣ ∣ ∣ ∣1+a11111+b11111+c11111+d∣ ∣ ∣ ∣=∣ ∣ ∣ ∣ab0011+b11111+c11111+d∣ ∣ ∣ ∣=a∣ ∣1+b1111+c1111+d∣ ∣+b∣ ∣11111+c1111+d∣ ∣+0+0=a∣ ∣bc011+c1111+d∣ ∣+b∣ ∣0c011+c1111+d∣ ∣=a{b((1+c)(1d)1)+c(1+d1)+b(c)(d)=abcd(1+1a+1b+1c+1d)
Now a,b,c,d are the roots of the given equation
=abcd(1+bcd+cda+dba+abcabcd)=abcd+bcd+cda+dba+abc=tpsp

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon