wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that ∣ ∣ ∣1+a2+a41+ab+a2b21+ac+a2c21+ab+a2b21+b2+b41+bc+b2c21+ac+a2c21+bc+b2c21+c2+c4∣ ∣ ∣=(ab)2(bc)2(ca)2

Open in App
Solution

∣ ∣ ∣1+a2+a41+ab+a2b21+ac+a2c21+ab+a2b21+b2+b41+bc+b2c21+ac+a2c21+bc+b2c21+c2+c4∣ ∣ ∣
=(ab)2(bc)2(ca)2
L.H.S.
If (ab)2 is a factor of the determinant then it we put (ab)2=0
C=0
put
so a=b
∣ ∣ ∣1+a2+a41+a2+a41+ac+a2c21+a2+a41+a2+a41+ac+a2c21+ac+a2c21+ac+b2c21+c2+c4∣ ∣ ∣=0
Similarly
(bc)2 & (ca)2 also the factor of determinants
Thus (ab)2(bc)2(ca)2 is a factor of determinant
Thus Δ=(ab)2(bc)2(ca)2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon