Lets take the LHS of the given expression
Δ=∣∣
∣∣a+b+2cabcb+c+2abcac+a+2b∣∣
∣∣
Perform C1→C1+C2+C3
=∣∣
∣
∣∣2(a+b+c)ab2(a+b+c)b+c+2ab2(a+b+c)ac+a+2b∣∣
∣
∣∣
Now, take 2(a+b+c) common from C1
=2(a+b+c)∣∣
∣∣1ab1b+c+2ab1ac+a+2b∣∣
∣∣
Perform R1→R1−R2 and R2→R2−R3
=2(a+b+c)∣∣
∣
∣∣0−(a+b+c)00b+c+a−(c+a+b)1ac+a+2b∣∣
∣
∣∣
Now, take (a+b+c) common from R1 and R2
=2(a+b+c)3∣∣
∣∣0−1001−11ac+a+2b∣∣
∣∣
Now, expand the determinants,
=2(a+b+c)3×1(1−0)
=2(a+b+c)3 Proved