Δ=∣∣
∣∣a+b+2cabcb+c+2abcac+a+2b∣∣
∣∣We use column transformations:
1. Column 1 = Column 1 + Column 2 + Column 3
Δ=∣∣
∣∣2a+2b+2cab2a+2b+2cb+c+2ab2a+2b+2cac+a+2b∣∣
∣∣
=2(a+b+c)∣∣
∣∣1ab1b+c+2ab1ac+a+2b∣∣
∣∣
=2(a+b+c)Δ1
where:
Δ1=∣∣
∣∣1ab1b+c+2ab1ac+a+2b∣∣
∣∣
We use elementary row transformations on this new determinant:
2. Row 2 = Row 2 - Row 1 and Row 3 = Row 3 - Row 1
Δ1=∣∣
∣∣1ab0b+c+a000c+a+b∣∣
∣∣
3. Expanding this determinant along Column 1, we get:
Δ1=(a+b+c)2
Thus, we get:
Δ=2(a+b+c)Δ1=2(a+b+c)3
Hence proved.