wiz-icon
MyQuestionIcon
MyQuestionIcon
2213
You visited us 2213 times! Enjoying our articles? Unlock Full Access!
Question

Prove that ∣ ∣ ∣(β+γαδ)4(β+γαδ)21(γ+αβδ)4(γ+αβδ)21(α+βγδ)4(α+βγδ)21∣ ∣ ∣=64(αβ)(αγ)(αδ)(βγ)(βδ)(γδ)

Open in App
Solution

∣ ∣ ∣(β+γαδ)4(β+γαδ)21(γ+αβδ)4(γ+αβδ)21(α+βγδ)4(α+βγδ)21∣ ∣ ∣

Let β+γαδ=X,γ+αβδ=Y,α+βγδ=Z


∣ ∣ ∣X4X21Y4Y21Z4Z21∣ ∣ ∣

=R1R1R2,R2R2R3

=∣ ∣ ∣X4Y4X2Y20Y4Z4Y2Z20Z4Z21∣ ∣ ∣

=(X4Y4)(Y2Z2)(X2Y2)(Y4Z4)+0

=X4Y2X4Z2Y6+Y4Z2[X2Y4X2Z4Y6+Y2Z4]

=X4Y2X4Z2Y6+Y4Z2X2Y4+X2Z4+Y6Y2Z4

=X2Y2(X2Y2)+X2Z2(Z2X2)+Y2Z2(Y2Z2)

=(β+γαδ)2(γ+αβδ)2[(β+γαδ)2(γ+αβδ)2]+(β+γαδ)2(α+βγδ)2[(α+βγδ)2(β+γαδ)2]+(γ+αβδ)2(α+βγδ)2[(γ+αβδ)2(α+βγδ)2]

Solving the above equation, we get,

=64(αβ)(αγ)(αδ)(βγ)(βδ)(γα)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon