wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that

∣ ∣ ∣xyzx2y2z2yzzxxy∣ ∣ ∣=(yz)(zx)(xy)(yz+zx+xy).

Open in App
Solution

Δ=∣ ∣ ∣xyzx2y2z2yzzxxy∣ ∣ ∣

byC1=C1C2

Δ=∣ ∣ ∣xyyzx2y2y2z2yzzxzxxy∣ ∣ ∣

Δ=(xy)∣ ∣ ∣1yzx+yy2z2zzxxy∣ ∣ ∣

byC2=C2C3

Δ=(xy)∣ ∣ ∣1yzzx+yy2z2z2zzxxyxy∣ ∣ ∣

Δ=(xy)(yz)∣ ∣ ∣11zx+yy+zz2zxxy∣ ∣ ∣

byC1=C1C2

Δ=(xy)(yz)∣ ∣ ∣01zxzy+zz2xzxxy∣ ∣ ∣

Δ=(xy)(yz)(xz)∣ ∣ ∣01z1y+zz21xxy∣ ∣ ∣

Expanding along C1

Δ=(xy)(yz)(xz){0+1(xy+xz)1(z2z2yz)}

Δ=(xy)(yz)(xz)(xy+yz+zx) [henceproved]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon