Let Δ=∣∣
∣
∣∣yz−x2zx−y2xy−22zx−y2xy−22yz−x2xy−22yz−x2zx−y2∣∣
∣
∣∣
Adding C1→C1+C2+C3, we get
Δ=∣∣
∣
∣∣xy+yz+zx−x2−y2−z2zx−y2xy−22xy+yz+zx−x2−y2−z2xy−22yz−x2xy+yz+zx−x2−y2−z2yz−x2zx−y2∣∣
∣
∣∣
Δ=(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣1zx−y2xy−221xy−22yz−x21yz−x2zx−y2∣∣
∣
∣∣
Applying R2→R2−R1 and R3→R3−R1 we get
Δ=(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣1zx−y2xy−220(x+y+z)(y−z)(x+y+z)(z−x)0(x+y+z)(y−x)(x+y+z)(z−y)∣∣
∣
∣∣
Δ=(xy+yz+zx−x2−y2−z2)(x+y+z)2∣∣
∣
∣∣1zx−y2xy−220(y−z)(z−x)0(y−x)(z−y)∣∣
∣
∣∣
Δ=(xy+yz+zx−x2−y2−z2)(x+y+z)2[(y−z)(z−y)−(z−x)(y−x)]
Δ=(x2+y2+z2−xy−yz−zx)(x+y+z)2
so Δ is divisible by (x+y+z)
The quotient when Δ is divisible by (x+y+z) is (x2+y2+z2−xy−yz−zx)(x+y+z)