Δ=∣∣
∣
∣∣yz−x2zx−y2xy−z2zx−y2xy−z2yz−x2xy−z2yz−x2zx−y2∣∣
∣
∣∣
Applying C1→C1+C2+C3
Δ=∣∣
∣
∣∣xy+yz+zx−x2−y2−z2zx−y2xy−z2xy+yz+zx−x2−y2−z2xy−z2yz−x2xy+yz+zx−x2−y2−z2yz−x2zx−y2∣∣
∣
∣∣
⇒Δ=(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣1zx−y2xy−z21xy−z2yz−x21yz−x2zx−y2∣∣
∣
∣∣
Applying R2→R2−R1 and R3→R3−R1 we get
Δ=(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣1zx−y2xy−z20(x+y+z)(y−z)(x+y+z)(z−x)0(x+y+z)(y−x)(x+y+z)(z−y)∣∣
∣
∣∣
⇒Δ=(x+y+z)2(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣1zx−y2xy−z20(y−z)(z−x)0(y−x)(z−y)∣∣
∣
∣∣
⇒Δ=(x+y+z)2(xy+yz+zx−x2−y2−z2)[(y−z)(z−y)−(z−x)(y−x)−0+0]
⇒Δ=(x+y+z)2(xy+yz+zx−x2−y2−z2)
So,Δ is divisible by (x+y+z)
The quotient when Δ is divisible by (x+y+z) is (x+y+z)(xy+yz+zx−x2−y2−z2)