1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Compound Angles
Prove that: (...
Question
Prove that:
(i) tan 225° cot 405° + tan 765° cot 675° = 0
(ii)
sin
8
π
3
cos
23
π
6
+
cos
13
π
3
sin
35
π
6
=
1
2
(iii) cos 24° + cos 55° + cos 125° + cos 204° + cos 300° =
1
2
(iv) tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
(v) cos 570° sin 510° + sin (−330°) cos (−390°) = 0
(vi)
tan
11
π
3
-
2
sin
4
π
6
-
3
4
cosec
2
π
4
+
4
cos
2
17
π
6
=
3
-
4
3
2
(vii)
3
sin
π
6
sec
π
3
-
4
sin
5
π
6
cot
π
4
=
1
Open in App
Solution
i
LHS
=
tan
225
°
cot
405
°
+
tan
765
°
cot
675
°
=
tan
90
°
×
2
+
45
°
cot
90
°
×
4
+
45
°
+
tan
90
°
×
8
+
45
°
cot
90
°
×
7
+
45
°
=
tan
45
°
cot
45
°
+
tan
45
°
-
tan
45
°
=
1
×
1
+
1
×
-
1
=
1
-
1
=
0
=
RHS
Hence
proved
.
ii
LHS
=
sin
8
π
3
cos
23
π
6
+
cos
13
π
3
sin
35
π
6
=
sin
8
3
×
180
°
cos
23
6
×
180
°
+
cos
13
3
×
180
°
sin
35
6
×
180
°
=
sin
480
°
cos
690
°
+
cos
780
°
sin
1050
°
=
sin
90
°
×
5
+
30
°
cos
90
°
×
7
+
60
°
+
cos
90
°
×
8
+
60
°
sin
90
°
×
11
+
60
°
=
cos
30
°
sin
60
°
+
cos
60
°
-
cos
60
°
=
3
2
×
3
2
+
1
2
×
-
1
2
=
3
4
-
1
4
=
2
4
=
1
2
=
RHS
Hence
proved
.
iii
LHS
=
cos
24
°
+
cos
55
°
+
cos
125
°
+
cos
204
°
+
cos
300
°
=
cos
24
°
+
cos
90
°
-
35
°
+
cos
90
°
×
1
+
35
°
+
cos
90
°
×
2
+
24
°
+
cos
90
°
×
3
+
30
°
=
cos
24
°
+
sin
35
°
-
sin
35
°
-
cos
24
°
+
sin
30
°
=
0
+
0
+
1
2
=
1
2
=
RHS
Hence
proved
.
iv
LHS
=
tan
-
225
°
cot
-
405
°
-
tan
-
765
°
cot
675
°
=
-
tan
225
°
-
cot
405
°
-
-
tan
765
°
cot
675
°
∵
tan
-
x
=
tan
x
and
cot
-
x
=
-
cot
x
=
tan
225
°
cot
405
°
+
tan
765
°
cot
675
°
=
tan
90
°
×
2
+
45
°
cot
90
°
×
4
+
45
°
+
tan
90
°
×
8
+
45
°
cot
90
°
×
7
+
45
°
=
tan
45
°
cot
45
°
+
tan
45
°
-
tan
45
°
=
1
×
1
+
1
×
-
1
=
1
-
1
=
0
=
RHS
Hence
,
proved
.
v
LHS
=
cos
570
°
sin
510
°
+
sin
-
330
°
cos
-
390
°
=
cos
570
°
sin
510
°
+
-
sin
330
°
cos
390
°
∵
sin
-
x
=
-
sin
x
and
cos
-
x
=
cos
x
=
cos
570
°
sin
510
°
-
sin
330
°
cos
390
°
=
cos
90
°
×
6
+
30
°
sin
90
°
×
5
+
60
°
-
sin
90
°
×
3
+
60
°
cos
90
°
×
4
+
30
°
=
-
cos
30
°
cos
60
°
-
-
cos
60
°
cos
30
°
=
-
cos
30
°
cos
60
°
+
cos
30
°
sin
60
°
=
0
=
RHS
Hence
proved
.
vi
LHS
=
tan
11
π
3
-
2
sin
4
π
6
-
3
4
cos
e
c
2
π
4
+
4
cos
2
17
π
6
=
tan
11
π
3
-
2
sin
4
π
6
-
3
4
cos
e
c
π
4
2
+
4
cos
17
π
6
2
=
tan
11
3
×
180
°
-
2
sin
4
6
×
180
°
-
3
4
cos
e
c
180
°
4
2
+
4
cos
17
×
180
°
6
2
=
tan
660
°
-
2
sin
120
°
-
3
4
cos
e
c
45
°
2
+
4
cos
510
°
2
=
tan
660
°
-
2
sin
120
°
-
3
4
cosec
45
°
2
+
4
cos
510
°
2
=
tan
90
°
×
7
+
30
°
-
2
sin
90
°
×
1
+
30
°
-
3
4
cosec
45
°
2
+
4
cos
90
°
×
5
+
60
°
2
=
-
cot
30
°
-
2
cos
30
°
-
3
4
cosec
45
°
2
+
4
-
sin
60
°
2
=
-
cot
30
°
-
2
cos
30
°
-
3
4
cosec
45
°
2
+
4
sin
60
°
2
=
-
3
-
2
3
2
-
3
4
2
2
+
4
3
2
2
=
-
3
-
3
-
3
2
+
3
=
3
-
4
3
2
=
RHS
Hence
proved
.
v
ii
LHS
=
3
sin
π
6
s
e
c
π
3
-
4
sin
5
π
6
c
o
t
π
4
=
3
sin
180
°
6
sec
180
°
3
-
4
sin
5
×
180
°
6
cot
180
°
4
=
3
sin
30
°
sec
60
°
-
4
sin
150
°
cot
45
°
=
3
sin
30
°
sec
60
°
-
4
sin
90
°
×
1
+
60
°
cot
45
°
=
3
sin
30
°
sec
60
°
-
4
cos
60
°
cot
45
°
=
3
×
1
2
×
2
-
4
×
1
2
×
1
=
3
-
2
=
1
=
RHS
Hence
proved
.
Suggest Corrections
0
Similar questions
Q.
Prove that:
(i) tan 225° cot 405° + tan 765° cot 675° = 0
(ii)
sin
8
π
3
cos
23
π
6
+
cos
13
π
3
sin
35
π
6
=
1
2
(iii) cos 24° + cos 55° + cos 125° + cos 204° + cos 300° =
1
2
(iv) tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
(v) cos 570° sin 510° + sin (−330°) cos (−390°) = 0
(vi)
tan
11
π
3
-
2
sin
4
π
6
-
3
4
cosec
2
π
4
+
4
cos
2
17
π
6
=
3
-
4
3
2
(vii)
3
sin
π
6
sec
π
3
-
4
sin
5
π
6
cot
π
4
=
1
Q.
Prove that:
(i) tan 720° − cos 270° − sin 150° cos 120° =
1
4
(ii) sin 780° sin 480° + cos 120° sin 150° =
1
2
(iii) sin 780° sin 120° + cos 240° sin 390 =
1
2
(iv) sin 600° cos 390° + cos 480° sin 150° = −1
(v) tan 225° cot 405° + tan 765° cot 675° = 0
Q.
Prove
tan
(
−
225
o
)
cot
(
−
405
o
)
−
tan
(
−
765
0
)
cot
(
675
o
)
=
0
Q.
Prove:
tan
225
o
cot
405
o
+
tan
765
o
=
2
Q.
Evaluate:
cos
225
∘
−
sin
225
∘
+
tan
495
∘
−
cot
495
∘
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Compound Angles
MATHEMATICS
Watch in App
Explore more
Trigonometric Ratios of Compound Angles
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app