We have (1+x)n=c0+c1x+c2x2+c3x3+...+cnxn .....(1)
Multiply (1) with x we get
(1+x)nx=c0x+c1x2+c2x3+c3x4+...+cnxn+1 .......(2)
Differentiating (2) w.r.t x we get
(1+x)n+nx(1+x)n−1=c0+2c1x+3c2x2+4c3x3+...+(n+1)cnxn .......(3)
Put x=1 in eqn(3) we get
(1+1)n+n×1(1+1)n−1=c0+2c1x+3c212+4c313+...+(n+1)cn1n
⇒2n+n.2n−1=c0+2c1+3c2+4c3+...+(n+1)cn
⇒c0+2c1+3c2+4c3+...+(n+1)cn=2n−1(n+2) is proved