1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Summation by Sigma Method
Prove that C...
Question
Prove that
C
1
+
2
C
2
+
3
C
3
+
4
C
4
+
.
+
n
C
n
=
n
.2
n
−
1
Open in App
Solution
C
1
+
2
C
2
+
3
C
3
+
.
.
.
.
+
n
C
n
=
n
+
2
n
(
n
−
1
)
2
!
+
3
n
(
n
−
1
)
(
n
−
2
)
3
!
+
.
.
.
.
.
+
n
×
1
=
n
+
n
(
n
−
1
)
+
n
(
n
−
1
)
(
n
−
2
)
2
+
.
.
.
.
.
.
+
n
=
n
[
1
+
n
−
1
+
(
n
−
1
)
(
n
−
2
)
2
+
.
.
.
.
.
+
1
]
=
n
[
1
+
n
−
1
1
!
+
(
n
−
1
)
(
n
−
2
)
2
+
.
.
.
.
.
+
1
]
put
n
−
1
=
N
=
n
[
1
+
N
1
!
+
N
(
N
+
1
)
2
!
+
.
.
.
.
.
+
1
]
=
n
[
N
C
0
+
N
C
1
+
N
C
2
+
.
.
.
.
.
.
+
N
C
N
]
=
n
2
N
=
n
2
n
−
1
Hence proved.
Suggest Corrections
0
Similar questions
Q.
C
1
+
2
C
2
+
3
C
3
+
4
C
4
+
.
.
.
.
.
.
+
n
C
n
=