wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1mlog(1+am)<1nlog(1+an), if m>n.

Open in App
Solution

(1+am)n=(am+1)n

Expansion of (am+1)n=nC0 (am)n+nC1(am)n1+...+1


Taking first two term only we get,
nC0(am)n+nC1(am)n1=amn+namnn=amn(1+nam)


(1+an)m=(an+1)m

Expansion of (an+1)m=(an)m+m1C(an)m1+...+1


Taking first two term only we get,
mC0(an)m+1Cm(an)m1=amn+mamnn=amn(1+man)

Given m>n

am>an

am<an

nam<man

1+nam<1+man

amn(1+nam)<amn(1+man)

(1+am)n<(1+an)m

Takinf log both side
log(1+am)n<log(1+an)m

nlog(1+am)<mlog(1+an)

1mlog(1+am)<1nlog(1+an)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Theorem for Any Index
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon