2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Product of Trigonometric Ratios in Terms of Their Sum
Prove that: ...
Question
Prove that:
cos
A
1
−
tan
A
+
sin
A
1
−
cot
A
=
sin
A
+
cos
A
Open in App
Solution
LHS
=
c
o
s
A
1
−
t
a
n
A
+
s
i
n
A
1
−
c
o
t
A
⇒
c
o
s
A
1
−
s
i
n
A
c
o
s
A
+
s
i
n
A
1
−
c
o
s
A
s
i
n
A
⇒
c
o
s
2
A
c
o
s
A
−
s
i
n
A
+
s
i
n
2
A
s
i
n
A
−
c
o
s
A
=
c
o
s
2
A
−
s
i
n
2
A
c
o
s
A
−
s
i
n
A
(
c
o
s
A
+
s
i
n
A
)
(
c
o
s
A
−
s
i
n
A
)
(
c
o
s
A
−
s
i
n
A
)
⇒
c
o
s
A
+
s
i
n
A
=
R
H
S
Hence [LHS=RHS]
Suggest Corrections
1
Similar questions
Q.
If
π
=
180
o
and
A
=
π
6
, prove that
(
1
−
cos
A
)
(
1
+
cos
A
)
(
1
−
sin
A
)
(
1
+
sin
A
)
=
1
3
Q.
Prove that
sin
A
(
1
+
tan
A
)
+
cos
A
(
1
+
cot
A
)
=
sec
A
+
c
o
s
e
c
A
Q.
Prove that SinA(1+tanA)+cosA(1+cotA)=secA+coecA
Q.
Prove the following trigonometric identities.
cos
A
1
-
tan
A
+
sin
A
1
-
cot
A
=
sin
A
+
cos
A