wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosθsinθ+1cosθ+sinθ1=cscθ+cotθ

Open in App
Solution


LHS=cosθsinθ+1cosθ+sinθ1

=(cosθsinθ+1)(sinθ+cosθ+1)(sinθ+cosθ1)(sinθ+cosθ+1)


=(1+cosθ)2(sinθ)2(sinθ+cosθ)2(1)2

=1+cos2θ+2cosθsin2θsin2θ+cos2θ+2sinθcosθ1
=1+2cosθ+cos2θ2sinθcosθ

=2cos2θ+2cosθ2sinθcosθ=cosecθ+cotθ=RHS

Hence, Proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Special Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon