wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
secθtanθsecθ+tanθ=12secθ.tanθ+tan2θ

Open in App
Solution

To prove:
secθtanθsecθ+tanθ=12secθ.tanθ+2tan2θ

Solution:

L.H.S. =secθtanθsecθ+tanθ

Multiplying numerator and denominator by secθtanθ,

=secθtanθsecθ+tanθ× secθtanθsecθtanθ

=(secθtanθ)2sec2θtan2θ

=(secθtanθ)2 (1+tan2θ=sec2θ)

=sec2θ2secθ.tanθ+tan2θ

=1+tan2θ2secθ.tanθ+tan2θ

=12secθ.tanθ+2tan2θ

= R.H.S.

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon