wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanθ1cotθ+cotθ1tanθ=1+secθ.cosecθ

Open in App
Solution

L.H.S: Converting into sinθ and cosθ form,
tanθ1cotθ+cotθ1tanθ=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)
=1sinθcosθ(sin2θcosθcos2θsinθ)=1sinθcosθ(sin3θcos3θsinθcosθ)
=1sinθcosθ((sinθcosθ)(sin2θ+cos2θ+sinθcosθ)sinθcosθ) .... (a3b3=(ab)(a2+ab+b2))
=1+sinθcosθsinθcosθ=1+1sinθcosθ=1+secθcosec θ=R.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
33
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon