(1+x−2x2)6=(1−x)6(1+2x)6
=(1−6x+15x2−20x3+15x4......)×[1+6(2x)+15(2x)2+20(2x)3+15(2x)4+....]
6C1=6,6C2=15,6C3=20,6C4=15 etc.
Multiply and the term of x4 will be
[1⋅15⋅24−6⋅20⋅23+15⋅15⋅22−20⋅6⋅2+15⋅1]x4
Hence the coefficient of x4 is
240−960+900−240+15=−60+15=−45
(1+x−2x2)6=1+a1x+a2x2+..........+a12x12
Putting, x = 1, we get
0=1+a1+a2+....+a12
Putting, x = -1 we get
64=1−a1+a2−....+a12
Adding (1) and (2) , we get
64=2(1+a2+a4+....)∴a2+a4+a6+......+a12=31