wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that coefficient of x4 in (1 + x - 2x2)6 is -45 and if complete expansion of the expression is 1+a1x+a2x2+....+a12x12
Prove that a2+a4+a6+...+a12=31

Open in App
Solution

(1+x2x2)6=(1x)6(1+2x)6
=(16x+15x220x3+15x4......)×[1+6(2x)+15(2x)2+20(2x)3+15(2x)4+....]
6C1=6,6C2=15,6C3=20,6C4=15 etc.
Multiply and the term of x4 will be
[1152462023+1515222062+151]x4
Hence the coefficient of x4 is
240960+900240+15=60+15=45
(1+x2x2)6=1+a1x+a2x2+..........+a12x12
Putting, x = 1, we get
0=1+a1+a2+....+a12
Putting, x = -1 we get
64=1a1+a2....+a12
Adding (1) and (2) , we get
64=2(1+a2+a4+....)a2+a4+a6+......+a12=31

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Theorem for Any Index
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon