wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

cos θ1-sin θ=tan π4+θ2

Open in App
Solution

LHS=cosθ1-sinθ
=cos2θ2-sin2θ2sin2θ2+cos2θ2-2sinθ2×cosθ2 cosθ=cos2θ2-sin2θ2, sinθ=2sinθ2cosθ2 and sin2θ2+cos2θ2=1 =cosθ2-sinθ2cosθ2+sinθ2cosθ2-sinθ22 =cosθ2+sinθ2cosθ2-sinθ2

On dividing the numerator and denominator by cosθ2, we get

=1+tanθ21-tanθ2 =tanπ4+θ2=RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon