CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
41
You visited us 41 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
cosπ15 cos 2π15 cos 3π15 cos 4π15 cos 5π15 cos6π15 cos 7π15=1128

Open in App
Solution

LHS=cosπ15 cos2π15 cos4π15 cos3π15 cos5π15 cos6π15 cos7π15 =cosπ15 cos2π15 cos4π15cos3π15 cos6π15 ×-cos8π15 =-12cosπ15 cos2π15 cos4π15 cos8π15× 12× cos3π15 cos6π15 =-12×2324sinπ152sinπ15cosπ15 cos2π15 cos4π15 cos8π15 ×222×sin3π15 2sin3π15cos3π15 cos6π15 =-23132sinπ15sin2π15 cos2π15 cos4π15 cos8π15 ×24sin3π15 sin6π15 cos6π15 =-2232sinπ152sin2π15 cos2π15 cos4π15 cos8π15 ×14sin3π15 2sin6π15 cos6π15
=-232sinπ15sin8π15 cos8π15 ×sin12π154sin3π15=-132sinπ15sin16π15 ×sin12π154sin3π15=-sinπ+π15128sinπ15×sinπ-3π15sin3π15=--sinπ15128sinπ15×sin3π15sin3π15=1128=RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon