wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
cosπ15cos2π15cos4π15cos7π15=116

Open in App
Solution

LHS=cosπ15cos2π15cos4π15cos7π15

=2sinπ15cosπ152sinπ15cos2π15cos4π15cos7π15 On dividing and multiplying by 2sinπ15

=2sin2π15×cos2π152×2sinπ15cos4π15cos7π15=2sin4π15×cos4π152×2×2sinπ15cos7π15=sin8π152×2×2sinπ15cos7π15

=2sin8π15cos7π152×2×2×2sinπ15=2sin8π15cos7π1516sinπ15=sin8π15+7π15+sin8π15-7π1516sinπ15 2sinAcosB=sinA+B+sinA-B

=sinπ+sinπ1516sinπ15=0+sinπ1516sinπ15=sinπ1516sinπ15=116=RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon