wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: cos22xcos26x=sin4xsin8x

Open in App
Solution

LHS=cos22xcos26x

=(cos2x+cos6x)(cos2xcos6x)

=(2cos(2x+6x2)cos(2x6x2)(2sin(2x+6x2)sin(2x6x2)

[Since, cosC+cosD=2cos(C+D2)cos(CD2),

[cosCcosD=2sin(C+D2)sin(CD2]

=(2cos4xcos(2x))(sin4xsin(2x))

=(2cos4xcos2x)(sin4xsin(2x))

=(2sin4xcos4x)(2sin2xcos2x)

=sin2(4x)sin2(2x) [Since, sin2θ=2sinθcosθ]

=sin8xsin4x

cos22xcos26x=sin4xsin8x.


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon