LHS=cos22x−cos26x
=(cos2x+cos6x)(cos2x−cos6x)
=(2cos(2x+6x2)cos(2x−6x2)(−2sin(2x+6x2)sin(2x−6x2)
[Since, cosC+cosD=2cos(C+D2)cos(C−D2),
[cosC−cosD=−2sin(C+D2)sin(C−D2]
=(2cos4xcos(−2x))(−sin4xsin(−2x))
=(2cos4xcos2x)(sin4xsin(2x))
=(2sin4xcos4x)(2sin2xcos2x)
=sin2(4x)sin2(2x) [Since, sin2θ=2sinθcosθ]
=sin8xsin4x
∴cos22x−cos26x=sin4xsin8x.