wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: cos2α+cos2(α+β)2cosαcosβcos(α+β)=sin2β

Open in App
Solution

cos2α+cos2(α+β)2cosαcosβcos(α+β)=sin2β
L.H.S=
cos2α+cos2(α+β)2cosαcosβcos(α+β)
=cos2α+[cosαcosβsinαsinβ]22cosαcosβ(cosαcosβsinαsinβ)
=cos2α+cos2αcos2β+sin2αsin2β2cosαcosβsinαsinβ2cos2αcos2β+2cosαcosβsinαsinβ
=cos2α+sin2αsin2βcos2αcos2β
=cos2α(1cos2β)+sin2αsin2β
=cos2αsin2β+sin2αsin2β
=(cos2α+sin2β)sin2β
=sin2β
L.H.S=R.H.S, Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon