We know for any triangle Δ ABC, r=4RsinA2sinB2sinC2.
Now, LHS will be 2+ 2sinA2sinB2sinC2.
Now, RHS
cos2A2+cos2B2+cos2C2
=cos2A2+1−sin2B2+1−sin2C2
=2+(cos2A2−sin2B2)−sin2C2
=2+(cosA+B2cosA−B2)−sin2C2
=2+(cosπ−C2cosA−B2)−sin2C2 [Since, A+B+C=π]
=2+(sinC2cosA−B2)−sin2C2
=2+sinC2(cosA−B2−sinC2)
=2+sinC2(cosA−B2−sinπ−(A+B)2)[Since, A+B+C=π]
=2+sinC2(cosA−B2−cosA+B2)
=2+2sinA2sinB2sinC2.
So, RHS= LHS.