wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cos20cos40cos60cos80=116

Open in App
Solution

cos20°cos40°cos60°cos80°=116

LHS=cos20°cos40°cos60°cos80°

=12(cos20°cos40°cos80°).............cos60=12

Let 20°=θ, then 40°=2θ&80°=4θ

=12cosθcos2θcos4θ

=12(sin23θ23sinθ)...........cosθ.cos2θ.cos2n1θ=sin2nθ2nsinθ

=124(sin8θsinθ)

=116sin160°sin20°

=116sin(180°20°)sin20°

=116sin20°sin20°

=116

LHS=RHS

Hence, it proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Domestic Electric Circuits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon