Prove that cos20°×cos40°×cos80°=18
L.H.S.=cos20°×cos40°×cos80°
Multiplying and dividing by 2
=12(2cos20°×cos40°×cos80°)
We know that, 2cosacosb=cosa+b+cosa-b
=12cos20°+80°+cos20°-80°cos40°
=12cos100°+cos-60°.cos40°
=12cos100°+12.cos40°
=14cos40°+12(cos40°.cos100°)
Multiplying and dividing by 2.
=22×14cos40°+12×2(2cos40°.cos100°)
=14cos40°+14(cos40°+100°+cos40°-100°
=14cos40°+14(cos140°+cos-60°)…………………..(As, 2cosacosb=cosa+b+cosa-b)
=14cos40°+14cos140°+14×12…………………….(As, cos-60°=12)
=14cos40°+cos140°+18
We know that 2cosacosb=cosa+b+cosa-b,
So, 90°+50°=140°,90°-50°=40°
=142cos90°.cos-50°+18
=1420.cos-50°+18…………………………(cos90°=0)
=0+18
=18.
Therefore, it is proved that cos20°×cos40°×cos80°=18.