cos2A+cos2(A+120)+cos2(A−120)=cos2A+cos2Acos2120+sin2Asin2120−2cosAcos120sinAsin120+cos2Acos2120+sin2Asin2120+2cosAcos120sinAsin120=cos2A+cos2A4+3sin2A4+cos2A4+3sin2A4=3cos2A2+3sin2A2=32(cos2A+sin2A)=32
Prove that cos2A+cos2(A+π3)+cos2(A−π3)=32
In a △ABC, prove that cos2A+cos2(A+π3)+cos2(A−π3)=32