Here we want +1 and as such we write cos2A=1−2sin2A and combine the other two terms.
L.H.S. =1−2sin2A+2sin(B+C)sin(C−B) (Note)
=1−2sin2A−2sinAsin(B−C) [∵sin(−θ)=−sinθ]
=1−2sinA[sinA+sin(B−C)]
=1−2sinA[sin(B+C)+sin(B−C)]
=1−2sinA(2sinBcosC)
=1−4sinAsinBcosC.