wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cos2X+cos2(X+π3)+cos2(Xπ3)+cos2=32.

Open in App
Solution

We have, LHS cos2X+cos2(X+π3)+cos2(Xπ3)+cos2=32

=cos2 X+[cos(x+π3)]2+[cos(xπ3)]2

=cos2x+(cos x cos π3sin x sinπ3)2+(cos x cosπ3+sin xsinπ3 )2

[cos(A+B)=cos A cos Bsin A sin B and cos (AB)=cos A cos B+sin A sinB]

=cos2x+(12cos x32sin x)2+cos2x+(12cos x+32sin x)2

=cis2x+[14cos2x+34sin2x32sin xcos x+14cos2x+34sin2x+32sin x+cos x]

=cos2x+2(cos2x4+3sin2x4) [(a+b)2+(ab)2=2(a2+b2)]

=4cos2x+2cos2x+6sin2x4

=6(sin2x+co2x)4=32=RHS [sin2θ+cos2θ=1]


flag
Suggest Corrections
thumbs-up
223
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon