Prove that cos2X+cos2(X+π3)+cos2(X−π3)+cos2=32.
We have, LHS cos2X+cos2(X+π3)+cos2(X−π3)+cos2=32
=cos2 X+[cos(x+π3)]2+[cos(x−π3)]2
=cos2x+(cos x cos π3−sin x sinπ3)2+(cos x cosπ3+sin xsinπ3 )2
[∵cos(A+B)=cos A cos B−sin A sin B and cos (A−B)=cos A cos B+sin A sinB]
=cos2x+(12cos x−√32sin x)2+cos2x+(12cos x+√32sin x)2
=cis2x+[14cos2x+34sin2x−√32sin xcos x+14cos2x+34sin2x+√32sin x+cos x]
=cos2x+2(cos2x4+3sin2x4) [∵(a+b)2+(a−b)2=2(a2+b2)]
=4cos2x+2cos2x+6sin2x4
=6(sin2x+co2x)4=32=RHS [∵sin2θ+cos2θ=1]