wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cos2xcosx2cos3xcos9x2=sin5xsin5x2

Open in App
Solution

Prove that
cos2xcosx2cos3xcos9x2=sin5x.sin5x2L.H.S.cos2xcosx2cos3xcos9x2
Multiply and divide by 2, we get
12[2cos2xcosx22cos3xcos9x2]
using formulae
2cosxcosy=cos(x+y)+cos(xy)weget=12[cos(2x+x2)+cos(2xx2)cos(3x+9x2)cos(3x9x2)]=12[cos5x2+cos3x2cos15x2cos3x2]=12[cos5x2cos15x2]=12[(2sin5x2.sin5x)]=122sin5x.sin5x2=sin5x.sin5x2R.H.S.
Proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon