wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
cos2xcosx2cos3xcos9x2=sin5xsin5x2.

Open in App
Solution

We know that,
2cosxcosy=cos(x+y)+cos(xy)

Now,
LHS = cos2xcosx2=12[cos(2x+x2)+cos(2xx2)]
=12(cos5x2+cos3x2)

And,
cos3xcos9x2=12[cos(3x+9x2)+cos(3x9x2)]
=12(cos15x2+cos3x2)

Therefore,
cos2xcosx2cos3xcos9x2=12(cos5x2+cos3x2)12(cos15x2+cos3x2)

=12(cos5x2cos15x2)

Now, using cosxcosy=2sinx+y2sinxy2, we get,

=12(2sin20x4sin(10x4))

=sin5xsin5x2 = RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon