Prove that cos2x.cosx2-cos3x.cos9x2=sin5x.sin5x2
L.H.S=cos2x.cosx2-cos3x.cos9x2
=122.cos2x.cosx2-2.cos3x.cos9x2
=12cos2x+x2+cos2x-x2-cos3x+9x2+cos3x-9x2
=12cos5x2+cos3x2-cos15x2+cos3x2
=12cos5x2+cos3x2-cos15x2-cos3x2
=12cos5x2-cos15x2
=122.sin5x.sin5x2……………………2sinasinb=cosa+b-cosa-b
=sin5x.sin5x2.
=R.H.S.
Hence, it is proved that, cos2x.cosx2-cos3x.cos9x2=sin5x.sin5x2