wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

cos3 2θ+3 cos 2θ=4(cos6θsin6θ)

Open in App
Solution

cos3 2θ+3 cos 2θ=4(cos6θsin6θ)

RHS=4[(cos2 θ)3(sin2 θ)3]=4(cos2 θsin2 θ)[cos4 θ+sin4 θ+sin2 θ cos2 θ]=4 cos2 θ [(cos2 θsin2 θ)2+2 sin2 θ cos2 θ+sin2 θ cos2 θ]=4 cos2 θ[(cos2 θsin2 θ)2+2 sin2 θ cos2 θ+sin2 θ cos2 θ]=4 cos2 θ [cos2 2θ+3 sin2 θ cos2 θ]=4 cos2 θ[cos2 2θ+3(1cos2θ2)(1+cos2θ2)]=4 cos2 θ [cos2 2θ+34(1cos2 θ)]=cos2 θ [4 cos2 2θ+33 cos2 2θ]=cos2 θ[cos2 2θ+3]=cos3 2θ+3 cos2 θ

= LHS

LHS = RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon