Prove that cos3π4+x-cos3π4-x=-√2sinx.
L.H.S.=cos3π4+x-cos3π4-x
We know that, cosa+b-cosa-b=-2sinasinb
=-2.sin3π4sinx
=-2.sinπ-π4sinx
=-2.sinπ4sinx………………………..(since, sinπ-θ=sinθ)
=-2×12×sinx……………………(sinπ4=sin45°=12)
=-2sinx……………..(As, 2×2=2)
=R.H.S
Therefore, it is proved that cos3π4+x-cos3π4-x=-√2sinx.